skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Link, J M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) on natural germanium, measured at the Spallation Neutron Source at Oak Ridge National Laboratory. The Ge-Mini detector of the COHERENT collaboration employs large-mass, low-noise, high-purity germanium spectrometers, enabling excellent energy resolution, and an analysis threshold of 1.5 keV electron-equivalent ionization energy. We observe an on-beam excess of 20.6 6.3 + 7.1 counts with a total exposure of 10.22 GWhkg, and we reject the no-CEvNS hypothesis with 3.9 σ significance. The result agrees with the predicted standard model of particle physics signal rate within 2 σ . Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. We consider the potential for a 10 kg undoped cryogenic CsI detector operating at the Spallation Neutron Source to measure coherent elastic neutrino-nucleus scattering and its sensitivity to discover new physics beyond the standard model (BSM). Through a combination of increased event rate, lower threshold, and good timing resolution, such a detector would significantly improve on past measurements. We considered tests of several BSM scenarios such as neutrino nonstandard interactions and accelerator-produced dark matter. This detector’s performance was also studied for relevant questions in nuclear physics and neutrino astronomy, namely the weak charge distribution of Cs and I nuclei and detection of neutrinos from a core-collapse supernova. Published by the American Physical Society2024 
    more » « less
  3. This Letter reports the first measurement of the oscillation amplitude and frequency of reactor antineutrinos at Daya Bay via neutron capture on hydrogen using 1958 days of data. With over 3.6 million signal candidates, an optimized candidate selection, improved treatment of backgrounds and efficiencies, refined energy calibration, and an energy response model for the capture-on-hydrogen sensitive region, the relative ν ¯ e rates and energy spectra variation among the near and far detectors gives sin 2 2 θ 13 = 0.075 9 0.0049 + 0.0050 and Δ m 32 2 = ( 2.7 2 0.15 + 0.14 ) × 10 3 eV 2 assuming the normal neutrino mass ordering, and Δ m 32 2 = ( 2.8 3 0.14 + 0.15 ) × 10 3 eV 2 for the inverted neutrino mass ordering. This estimate of sin 2 2 θ 13 is consistent with and essentially independent from the one obtained using the capture-on-gadolinium sample at Daya Bay. The combination of these two results yields sin 2 2 θ 13 = 0.0833 ± 0.0022 , which represents an 8% relative improvement in precision regarding the Daya Bay full 3158-day capture-on-gadolinium result. Published by the American Physical Society2024 
    more » « less